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Abstract

The goal of this bachelor thesis is to analyze the information flow in the seeding code
of pseudo-random number generators (PRNGs). PRNGs are used for cryptographic
applications and are often crucial for their correct function. But PRNGs are often
complicated and therefore error prone. There is a long history of defects that were
caused by failed seeding and that were fatal for cryptographic applications. For example
a bug in the “SHAIPRNG” of Apache Harmony (i.e. the PRNG used in earlier Android
versions) reduced the entropy that is used for seeding from 20 bytes to 8 bytes. Such bugs
are hard to detect, because they cannot be easily tested for and might stay unnoticed
for a longer time. They are mainly found in code reviews that are laborious due to the
complexity of cryptographic code.

We describe this class of defects in term of reduced information flow. We specify
this property formally and develop techniques and tools to verify it. We show that
several PRNGs do not have reduced information flow from the seed into the PRNGs
internal state. For Java-based PRNGs we specify our information flow goal using KeY’s
extension to the Java Modeling Language (JML) and use KeY to prove those contracts
and additional helper contracts for sub functions. For C-based PRNGs we propose a
solution based on the bounded model checker CBMC.
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1 Introduction

1.1 Motivation

Debian-OpenSSL vulnerability, what it is and how bad it is. In 2008 a major flaw
in the pseudo random number generator (PRNG) of the Debian package of OpenSSL
was discovered [7]. The bug was introduced two years before by the package maintainer.
The maintainer wanted to improve the software quality of the package by removing all
accesses to uninitialized memory. The maintainer found some accesses and asked on
the mailing list if removing those function calls would significantly harm the PRNG.
Fatally the question didn’t get answered correctly and he accidentally severely harmed
the PRNG: the OpenSSL library on Debian was only able to generate at most 26 =
65536 different keys per given key size. This problem made all generated keys easily
breakable and it remained undetected for two years.

Apache Harmony SHA1PRNG, problem with Bitcoin applications. In 2013 another
PRNG flaw gained public attention. Several Bitcoin wallets on Android were inse-
cure [4]. Bitcoin requires random data for two different actions. Firstly for generating
the keys representing the wallet, and secondly for a nonce (number used once) for the
ECDSA [12] (elliptic curve digital signature algorithm) signature on every transaction.
When the nonce is partly known attacks like the ones shown in [19] are possible, but
when a nonce is used multiple times with the same key pair, the private key can be
easily reconstructed from those multiple signatures. Because all signatures are publicly
visible, an attacker can search for such signatures, reconstruct the private key for the
wallet and then transfer all Bitcoins away. A problem in the PRNG severely reduced the
quality of its output and made such an attack possible. All wallets that were used on
an Android device while the bug still existed (up to and including Android 4.1) should
be considered compromised.

The need for a better approach to detect such problems. Such problems, when the
quality of a PRNG drops dramatically due to a programming error, reoccur from time
to time. Just recently (until 17.02.2015) the system PRNG in FreeBSD was broken
for four months [10]. Keys generated with that broken PRNG might be predictable.
All these problems didn’t make the PRNGs output completely deterministic but only
reduced its randomness to a value that is high enough to not be noticed when using the
PRNG but low enough to allow serious attacks. Hence these problems are normally only
detected in manual code reviews. But code reviews are time consuming and therefore not
regularly done, especially in free and open source projects. Consequently such problems



can remain undetected for longer periods. In order to prevent such incidents from
reoccurring or at least reduce them, a better means than manual review is needed. In
this bachelor thesis we present such a means: we show how to specify the necessary
correctness property in terms of information flow and verify that specification for three
real world PRNGs.

1.2 PRNG Problems: Background and Commonalities

In order to understand what went wrong in the incidents presented above we need to
understand what PRNGs do in principle and then look at the incidents again.

What is a PRNG in principle? PRNGs take a small amount of input entropy (i.e.
randomness) and construct a stream of data that is indistinguishable from a stream
of random data for an attacker with limited computational resources. The process of
adding initial entropy is information theoretically a bottleneck for the total amount of
entropy available to the PRNG and the total amount of entropy in its output stream.
Therefore getting enough input entropy is crucial for the PRNG to be able to operate
correctly.

Debian-OpenSSL. The OpenSSL PRNG acquires randomness from many different
sources in order to not depend on a single source. In normal operation these sources are:

e current process ID

e current user ID

current group ID

uninitialized memory buffers
e an OS-specific way to collect random data.

The only source that contains significant amounts of entropy is the OS-specific source.
The maintainer’s patch accidentally removed not only the uninitialized memory buffers
but also all other sources except for the current process ID. Yet such an ID is normally
not assigned randomly and is only a two byte integer that has at most 2'6 = 65536
different values. This incident was caused by reduced input entropy.

Apache Harmony SHA1PRNG. The input entropy of SHA1PRNG are 20 bytes from an OS-
specific source. These bytes are copied to the PRNGs internal state. Accidentally 12 of
these 20 bytes got overwritten with deterministic data (i.e. O-bytes or a counter), because
the pointer that indicated where to put more data was not updated. Consequently
the PRNG had only 256% = 2%¢ remaining possible output streams. This number of
possible output streams is higher than for the previous incident. Therefore breaking
keys generated with this PRNG might be a lot harder, but it was enough to get some

10



applications use the same nonces more than once. This security failure was also caused
by reduced input entropy.

The next step is to formally describe this problem and on the other hand the correct-
ness property for the PRNG that is violated. In order to do so, we need to focus on
entropy/information flow and understand how random data moves through the PRNG.

1.3 PRNG Principles and Terminology

1.3.1 Entropy, Injectivity and Information Flow

What is entropy? FEniropy is a measure for uncertainty. It can be used to describe
the degree of randomness of data and thereby the quality of random data. There are
different ways to measure entropy. The min entropy measures the expected probability
of an attacker to guess the random data in one guess, whereas the Shannon entropy
measures how long a message has to be on average to be transmitted reliably. In this
bachelor thesis we focus on evenly distributed random variables and transformations
that keep the distribution even. Also we do not need to quantify reduced entropy. Our
focus lies on weather all entropy is preserved or entropy is reduced. For such variables
and in such cases the above mentioned entropy measures are equal so the selection of the
entropy measure does not matter. For simplicity we also use the term “entropy” below
when we mean random data that contains this specific amount of entropy.

What is information/entropy flow? When we say that information (i.e. entropy) flows
from a source variable (typically before execution of a program) to a destination variable,
this means an attacker with knowledge of the destination variable can learn something
about the source variable. For a formal definition, let f : ins — outs be the function
that calculates the output of a deterministic and terminating program from its input.
This function induces an equivalence relation on ins with iny ~ ing < f(in1) = f(ing).
~ is the information flow through f. The amount of information flowing corresponds
to the degree of injectivity of f (i.e. the number of equivalence classes of ~). Maximal
information flow means a maximal number of equivalence classes, that is |ins| assuming
lins| < |outs].

As some examples, consider the 3 Java functions in Figure 1.1with their information
flow from source to their return value.

£1 and £2 have information flow, but in £3 no information flows. For PRNGs we need
to quantify the information flow, especially we need to identify, if all information from
the source variables flows to the target variables. This is the case in £1 due to overflow
and the Java-semantics of additions. The property of full information flow through a
function f is equivalent to its injectivity. So while £1 is injective, neither £2 nor £3 is.

Equipped with that understanding of information flow, let’s look at how information
flows through a PRNG normally.
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int f1(int source){
return source + 10;
}
int f2(int source){
if (source > 0){
return 1;
} else {
return O0;

}
}
int f3(int source){

return 10 + source - source;
}

Figure 1.1: 3 Java functions as an example for information flow

1.3.2 Basic PRNG Structure

PNRGs typically store the entropy that is initially provided to them in an internal state.
For most PRNGs this state initially has a fixed value, so there is no entropy in it. Some
PRNGs however may start with their internal state with e.g. uninitialized memory. We
want to look at such PRNGs like they would be starting with a fixed internal state
and then add the entropy contained in the uninitialized memory to this internal state
afterwards.

Abstract description of PRNG seeding. In order to acquire a random internal state,
we need entropy to be added to the internal state. This is done by a function we call
addEntropy. When B is the set of all byte values, the signature of the addEntropy
function would look like this:

o0
addEntropy : B™ x U B™ — B"

m=0

Using this function, one can add an arbitrary amount of m seeding bytes to the internal
state of size n. The process of using addEntropy initially to make a known internal state
random, i.e. inserting the initial amount of entropy into the PRNG, is called seeding.
Some PRNGs don’t require the user! to seed them manually, probably in order to prevent
them from using an unseeded PRNG. They seed themselves by requesting random data
from an OS-specific source, when they are used the first time. This process is called
self-seeding. PRNGs designers have made different decisions about how a PRNG can be
operated and thereby how addEntropy may be used:

SEEDING.1 The PRNG can only be self-seeded

!The user of a PRNG is a programmer using its API.
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SEEDING.2 The PRNG has to be seeded manually in the beginning otherwise it
outputs an error

SEEDING.3 The PRNG has to be seeded manually in the beginning otherwise it
produces bad random data.

SEEDING.4 The PRNG may be seeded manually and the PRNG seeds itself if it
is not seeded manually before the first use.

SEEDING.5 The PRNG may be seeded manually but the PRNG (additionally)
seeds itself regardless of being seeded manually (either on the first use
or on initialization)

SEEDING.6 The PRNG may be seeded manually and the user may initiate (or
enable/disable) self-seeding.

Regardless of what is chosen here, there is another decision that is free in most of the
scenarios above

ADD_ENTROPY.1 The user can call addEntropy at any point when the PRNG is
operated.

ADD_ENTROPY .2 The user can call addEntropy only in the beginning (or never
depending on choice above).

ADD_ENTROPY.3 The user can call addEntropy at any time, but this resets the
PRNG before addEntropy is executed.

Abstract description of PRNG output generation. Independently from getting ex-
ternal entropy, PRNGs need to generate a longer stream of data from a short amount
of data. In order to achieve that the PRNGs normally operate in cycles. Generating
output in cycles can be described using the two functions permute and outputy:

permute : B" — B"

output : B" — BF

where k is the number of bytes emitted in one cycle. Typically such blocks are 20
bytes long. Let’s have a look how these functions are used together to build a PRNG.
We consider a PRNG that does seeding initially and not between the iterations. Let

e s5; € B" be the internal state at beginning of the i-th cycle
e 0; € BF be the i-th output block
e input € B™ be the seed.

e s| € B" be an initial state

13



then the PRNG can be described with the following equations.
so = addEntropy(s,input)

s; = permute(s;—1) Yi=1,...
0; = output(s;) Vi=1,...

A typical instantiation of such a PRNG would have n > 20, k = 20 and m = 20.
Often permute and output are implemented together in one function.

Our goal is to prove that a given PRNG uses the full information supplied. To show
that, we prove that all entropy contained in a certain amount n of random seeding bytes
is fully used in (the first) n bytes of output. This is equivalent to the function f

f(data) = output(permute(add Entropy(c, data)))

being injective (assuming m = k = n = 20).

1.4 Information Flow through PRNGs

In most PRNGs all 3 functions (add Entropy, permute, output) are designed using cryp-
tographic hash functions. When entropy flows through such PRNGs it needs to pass
the hash function. To understand what needs to be proven and specified here, we take
a look on how hash functions are used in PRNGs.

1.4.1 Use of Hash Functions in PRNGs

Cryptographic hash functions are used in PRNGs to lower the possibility of using
output from different cycles to calculate (parts of) the internal state and by that predict
further output of the PRNG. Mathematically cryptographic hash functions h have the
signature

oo
h:|JB™ B
m=0
with a fixed value of n. n is called the hash size (i.e. digest size) and the result of the

function is called a hash. Hash functions are typically assumed to have the following
properties:

1. It is computationally hard to reverse h, i.e. calculating x from a given y with
h(z) =y.

2. It is computationally hard to find collisions in h, i.e. calculating 2’ from a given x
with h(xz) = h(z") where parts of 2’ may also be given. While most real-world hash
functions used in PRNGs have this property, it’s unclear whether it is required for
secure operation of the PRNG.
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3. The entropy in a hash is not significantly lower than the entropy of the input of A
given the input is not larger than n bytes. When H is an entropy measure, then
y=h(zr) = H(y) £ min(H(z),n).

4. h distributes the entropy “evenly” throughout the result, so e.g., the first half of a
hash has half the entropy of the total hash.

Typically, because such functions are often used to calculate hashes of large amounts
of data, hash functions operate in cycles, like PRNGs do. They split this input data in
blocks, which they incorporate into their internal state individually. Finally the function
does some padding and calculates a hash from the internal state. This principle can also
be seen in most interfaces for cryptographic hash functions. In the example interface
shown here context denotes the internal state of the hash function.

1. void init(context): initialize the context of the hash function object.

2. void update(context, data): add the given data to the context and begin with
the calculation of the hash function.

3. hash doFinal(context): do final actions like padding, and calculate the result of
the hash function (i.e. the hash).

Calling conventions for doFinal. Calling doFinal often leaves the context in an unde-
fined state. Calling doFinal or update directly after this call would be not allowed. A call
of init is required to use the context again. Sometimes however this function already
resets the context (i.e. calls init) so that the hash function context can be instantly
used again. Care has do be taken of this two conventions when using or specifying the
interface as this distinction cannot be seen in the API.

Distinction of calculations against calls. Regardless of this different calling conven-
tions we still invoke multiple function in order to calculate on hash. To be able to talk
about the hash function represented by such interfaces as one, we refer to one calcula-
tion of a hash as calculation of the hash function that consists of multiple calls to this
interface.

1.4.2 Formulating Assumptions about Information Flow

In order to prove full information flow through a PRNG, we need to specify that the
hash function preserves all input entropy. This can only be true if not more entropy than
the hash size is in the hash function’s input. When we seed the PRNG with exactly
this much entropy, we can be sure that this is always the case (as there is no additional
entropy anywhere in the PRNG 2). But when we conduct a proof over an unmodified

2We need this to be true, because for our proof we need to specify injectivity from all entropy. Real-
world PRNGs might not have this property. They might use uninitialized memory, the current time,
PID, scheduling decisions in multi-threaded programs and other source of non-determinism. These
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PRNG, we need to prevent the proof system from analyzing the hash function, because
such functions are purposely hard to analyze.

For proving injectivity of the PRNG, we consider 2 possibilities:

1. We assume injectivity of the hash function in a logical specification. When doing so,
we need to make sure, that our proof system of choice does not see a contradiction
in the hash function assumed injective. Or:

2. We replace the hash function with our own function, which we called dummy hash
function, that is injective from the seed-bytes of its input to its output.

Below we describe the 2 options in more detail:

1.4.3 Alternative 1: Assuming Injectivity as a Logical Specification

This alternative means specifying the injectivity of the hash function so that the proof
system (e.g. KeY [13, 1]) does not have to look at the implementation and can just use
the specification. We might be able specify that if more data than the hash size is
supplied, then only the entropy is returned. But that is a very complex task, because
the hash function might be used in different locations when the entropy that needs to
be returned is at different positions in the input data. So a specification would need to
reflect the hash function’s usage and therefore be very large and complex.

We specify the injectivity of the hash function and ensure that our proof system doesn’t
see a contradiction by manual proof inspection. This way this alternative is easier to
carry out. On the other hand, this alternative requires a proof system that allows the
usage of method contracts and the specification of information flow in such contracts.

1.4.4 Alternative 2: Substituting the Hash Function Implementation

When using a proof system that does not allow using method specifications or spec-
ifying information flow in contracts as above, substituting the hash function might be
the only possibility.

Soundness criteria for the hash function. Because computations can only reduce en-
tropy one can do almost anything in the dummy function. In order to fit our proof,
the dummy function must be injective from the seed-part of the input to its output.
The following set of properties prevent the function from adding entropy from any other
source to its output:

1. The function may not keep any entropy (that came from the seed) between different
calculations.

additional entropy sources need to be removed. This is allowed because we do not need to consider
these non-significant amounts of entropy. In OpenSSL we had to remove such sources. See Section 4.3
for more details.
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2. The function may not access any global state (that contains seed entropy) from
the PRNG.

3. However the function may keep counters to distinguish its different calculations
and act different in each calculation as they typically do not contain seed entropy.

With that comes the limitation that we can normally only proof so much information
flow through the PRNG as fits into the hash. Any more information is definitely lost
and can not be preserved by any hash function.

Soundness criteria for the code calling the hash function. Another assumption usu-
ally done about hash functions is that they mix all incoming information and distribute
it uniformly across the hash. Because our dummy hash function cannot fulfill this prop-
erty we need to be careful about what the surrounding code does. Consider the following
code example with seed being 20 bytes of entropy, and h() being a hash function:

state = h(seed);
state?2 h(state);

output = state[0..9] | state2[0..9];

The operation that calculates output takes 10 bytes from each state and state2 and
concatenates them to a 20 byte output (state[0..9] is denoting the first half of state).
For injective functions h() the entropy of both state and state2 is both 20 bytes and
the shared entropy between them is also 20 bytes. So knowing state leads to knowing
state2 (and the other way round). In order to understand what the entropy of output
is, we look at different possibilities for h():

When we assume h() to be the identity function, state[0..9] and state2[0..9] are
equal and the resulting entropy of output is only 10 bytes. But when we assume h()
to be a function that reverses its input, state[0..9] and state2[0..9] are independent
from each other, so there is no shared entropy between them and therefore output has
20 bytes of entropy.

But when we assume h() to be a cryptographic hash function, inverting becomes
computationally hard (i.e. getting to know state from knowing state2). When we take
the first 10 bytes of each state and state2, we would say that they now contain 10 bytes
of entropy each and that on average 5 bytes of entropy are shared between those two parts
(because we assume that the entropy is evenly distributed). So the entropy of output
would be estimated with only 15 bytes. Therefore one could enumerate all expectedly
256%° values for output, but doing so might (because of the hash function’s complexity)
involve calculating the output for all possible 25620 seeds and so this limitation might
not be that helpful for an attacker.

The example shows that we need to take extra care when the surrounding code treats
a hash non-uniformly. If e.g. it takes different code paths based on what a specific byte
looks like or a loop count depends on the value of the hash. Also splitting and re-uniting
different hashes needs to be watched with care as seen in the example above.
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1.5 Basics of the Used Formal Verification Systems

1.5.1 KeY: a Deductive Verification System for Java

This section is based on [1].

The core of the KeY system consists of a theorem prover for a program logic that
combines a variety of automated reasoning techniques. The KeY prover differs from
many other deductive verification systems in that symbolic execution of programs, first
order reasoning, arithmetic simplification, external decision procedures, and symbolic
state simplification are interleaved.?> For loop and recursion free programs, symbolic
execution is performed in a fully automated manner.

The program logic supported by KeY is Dynamic Logic (DL) [11], a first order multi-
modal logic. DL extends first order logic (FOL) with two families of modal operators: (p)
(‘diamond’) and [p] (‘box’) where p is a program fragment. The formula (p)¢ expresses
that the program p terminates in a state in which ¢ holds, while [p]¢ does not demand
termination and expresses that if p terminates, then ¢ holds in the final state.?

To enable formal arguments about soundness and completeness, the KeY prover em-
ploys a sequent calculus for reasoning about Java DL formulas. Each proof node is a
sequent of the form I' = A, where I' and A are sets of formulas, with the intuitive
meaning that the conjunction of the assumptions I' implies at least one of the formulas
in A.

A proof in KeY consists of logical rule applications on DL sequents. To reason effi-
ciently in a rich program logic for a target language like Java, a large number of sequent
calculus rules are needed (over 1500 in the standard configuration). To implement these
efficiently and to permit external validation of the rules, we use so-called taclets, de-
scribed in [3, Chap. 4]. Method calls can be handled either by inlining the method body
or by replacing a method invocation by the method’s specification.

1.5.2 CBMC: a Bounded Model Checker for ANSI-C

This section is based on [16].

The C Bounded Model Checker (CBMC) [5] demonstrates the violation of assertions in
C programs, or proves safety of the assertions under a given bound. CBMC implements
a bit-precise translation of an input C program, annotated with assertions and with
loops unrolled to a given depth, into a formula. If the formula is satisfiable, then an
execution path leading to a violated assertion exists.

CBMC performs symbolic execution by eagerly unwinding loops up to a fixed bound,
which can be specified by the user on a per-loop basis or globally, for all loops. Constant
propagation and expression simplification are key to efficiency, and prevent exploration
of certain infeasible branches. At the end of this process the program is represented as a
system of equations over renamed program variables in guarded statements. The guards

3The prover closest to KeY in this regard is KIV [23].
4This formulation assumes a deterministic programming language, like sequential Java in the context
of KeY.
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//@ determines \pre(h) \by \post(\result); (%)
int £f(int h) { ... }

Figure 1.2: A sample information flow contract
Vhe, hb. f(h®) = f(h®) — h® = Kb .

Figure 1.3: schematic proof obligation for a information flow contract like Figure 1.2

determine whether an assignment is actually performed in a given concrete program
execution.

This system of equations is solved with a SAT solver. A model computed by the
SAT solver corresponds to a path violating at least one of the assertions in the program
under scrutiny, and the model is translated back to a sequence of assignments to provide a
human-readable counterexample. Conversely, if the formula is unsatisfiable, no assertion
can be violated within the given unwinding bounds.

1.6 General Approach to Verifying new PRNGs

For a given PRNG we start by identifying how to operate the PRNG: How to seed it,
how to obtain output, how to disable initial self-seeding with OS-specific inputs, how
does the PRNG interact with the hash function (described in “Structure of the PRNG”).
Then we specify the information flow through the hash function by replacing it, or by
assuming its injectivity (“Information Flow Through the Hash Function”). Finally we
specify our original proof goal and prove that with the prover of our choice.

1.6.1 Proving Injectivity using Information Flow Contracts in KeY

Example for a specification of maximal information flow. Let’s have a look how
assuming injectivity works in practice using the Java Modeling Language (JML) [17]
with KeY-specific extensions. Consider the JML clause in Figure 1.2. This clause is an
“information flow contract”. It describes the claim that the result of £ after execution of
the function (indicated by \post (\result)) is enough to reconstruct the input parameter
h before execution of the function (indicated by \pre(h)). Effectively this means that
f is injective. We will use clauses of this structure to specify injectivity for functions
later. More explanation on the syntax and semantics of these specific JML clauses can
be found in [9].

Proof obligations for information flow contracts. This paragraph is based on [9]. To
prove information flow contracts, KeY formalizes the contract in Dynamic Logic. The
formalization follows self-composition style and is straight-forward. The (schematic)
proof obligation for a contract like (x) is shown in Figure 1.3. We refer the interested
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reader to [22, 21] for details of the formalization in Dynamic Logic. The important fact
is that information flow contracts of the callee method can be used—just like functional
contracts—when verifying the caller method.

Using information flow contracts. Let’s consider the following use of the function £
with the information flow contract from Figure 1.2.

int x1 =
int x2

f(x1);
When evaluating such a function symbolically, KeY will now apply the information flow
contract for the function £ without looking at f£’s implementation. This will be visible
in the proof as a new predicate expressing the relation between x1 and x2. In KeY this
predicate’s name starts with RELATED_BY_f and is dependent on x1 and x2. For simplicity
of this bachelor thesis we ignore dependence on e.g. the Heap and other technical things
and just write the predicate as RELATED_BY_f(x1, x2). As these predicates mark the
functional dependence between variables, we call them markers.

Additionally KeY introduces new rules for treating those predicates. Those rules are
generated when the information flow contract is used and the markers are constructed.
These rules allow when there are two markers e.g.

RELATED_BY_f(x1_a, x2_a) ARELATED_BY_f(x1_b, x2_b)
available as assumptions, to add
x2_a == x2_b — xl_a == x1_b

as a new assumption. This represents the injectivity claimed in Figure 1.2.

Conducting a proof with information flow contracts. When information flow through
a function is to be proven, KeY generates a formula with two invocations of the function.
When we specify information flow as in Figure 1.2 we get the two invocations together
with the obligation to show that if the outputs of the functions are equal, the inputs are
equal as well. Such a proof is normally performed using these steps:

1. Simplify the formulas involving the two invocations. In order to not do the simpli-
fication work twice, use the macro “Auxilliary calculation for self-compositioning
proofs”. This macro application generates a new subproof in which we simplify
one of the invocations by finishing the symbolic execution and transformation into
a DL formula. The subproof is then used create a rule that contains all the sim-
plification steps and that can be applied in the original proof.

Now we have two invocations with “RELATED_BY” markers in the main proof.

2. Simplify the current proof goal so that all “RELATED_BY” markers available as
individual assumptions.
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(\seq_def int i; O0; a.length; alil)

Figure 1.4: Using JML* seq_def to transform an array a into a JML* sequence

3. Use the special rules on each pair of markers from the two invocations manually.
Because the automatic matching of the “RELATED _BY” markers doesn’t always
get the correct pairs. For our proofs we disabled that part of KeY.

4. Give manual proof guidance specific to the PRNG to be verified.

5. Apply auto-mode to close all remaining goals

Reasoning about arrays, sequence comprehensions. In order to apply this method
on the following PRNGs we will need to speak about array contents in the contracts. In
order to do so, arrays need to be transformed into finite sequences. Those are usually
defined with the seq_def syntax:

(\seq_def iterationVariableDefinition; from; to; value)

from denotes the index of the first element and to denotes the index of last (exclusive)
element of the sequence (and not the length of the sequence). This syntax can be used
to create a finite sequence from an array as shown in Figure 1.4. This construct defines
the sequence of the whole array contents. Such sequences can be used in determines
clauses, which is exactly what we will do.

1.6.2 Proving Injectivity using CBMC

To prove injectivity of a function in C, we used CBMC. The procedure of proving this
property looks different from the one for proving injectivity of a Java function with KeY.
CBMC is mainly used for proving assertions. As already outlined in Subsection 1.5.2
proving with CBMC works in two steps.

1. Use CBMC to transform a finite unwind of the code and assertions into a proposi-
tional formula in CNF that is satisfiable if and only if an assertion may fail. This
transformation is only possible if all loops (and recursions) are finite with small
and obvious bounds (so CBMC’s constant propagation can resolve them).

2. Use a SAT solver to check the satisfiability of the CNF.

The found variable assignment will then represent the execution path that led to the
failed assertion.

The verification driver. Let’s consider the extract from our verification driver for the
OpenSSL PRNG in Figure 1.5. When CBMC is used on this code, the resulting formula
is satisfiable and each assignment representss a possible execution path that leads to the
assert (0). To verify injectivity, we perform the following steps with this code:
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20 int main () {

29 for(i = 0; i < INPUT_AMOUNT; i++){
30 input = in[il;
31 }

<CODE UNDER VERIFICATION TO BE INJECTIVE FROM in TO

out >
47 for(i = 0; i < OUTPUT_AMOUNT; i++){
48 output = out[i];
49 printf ("%02x", outl[il);
50 }
60 assert (0);
64

Figure 1.5: The overall structure of the verification driver for C functions using CBMC.
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1. Sanity check for the other assertions Remove the assert(0) in line 60 and verify
that the CNF ¢( corresponding to this program is unsatisfiable. This proves that
all other assertion throughout the code cannot fail.

2. General sanity check for the tool chain Add the assert(0) in line 60. CBMC will
generate a CNF ¢ of which the variable assignments correspond to execution paths
leading to this assertion. Verify that this CNF c is satisfiable.

3. Verification of injectivity Now use this CNF ¢ to construct another CNF ¢’ to be
shown as unsatisfiable as follows.

When transforming code to a CNF, CBMC creates new variables in the CNF for each
program variable in each state in that it might change. During transformation CBMC
generates a mapping from these program variables to the logical variables. This mapping
is partly appended to the generated CNF in comments at the end of the output. The
parameters generated CNF ¢ can be split into three sets of variables.

1. in, all bits of the in array.
2. out, all bits of the out array.

3. x, all bits that correspond to intermediate values of other variables during program
execution or to variables used for encoding other boolean expressions into CNF
(e.g. generated by the Tseitin-transformation).

The program computes out from in, iff there is an = such that c(in, out, z) is true.

Identifying input and output variables. CBMC does not output a mapping for array
contents in the comments of the CNF. Therefore we cannot use the comments to identify
the logical variables for each element of the array. To get those elements into the com-
ments we use the two for loops in lines 29-31 and 47-50. Assigning each element of the
array to the variable input makes CBMC create logical variables for each intermediate
value of input and write their mapping down at the end of the CNF. Our tool uses these
comments to find what variables of ¢ are part of in and out.

Encoding injectivity as a SAT problem. Now injectivity of the C function is equivalent
to the formula ¢’ being unsatisfiable.

d(in,in’, out,out’',x, 2") = c(in, out,x) A c(in’, out’, x") Nin # in’ A out = out’

We built a tool that transforms the original CNF c into a CNF ¢” that is equisatisfiable
to ¢’. The tool does:

1. outputs every clause of ¢ twice, once with the original variables and once with
variables from a fresh set of variables. This represents c(in, out) A c(in’, out’).

2. outputs clauses encoding out = out’. This can be expressed in CNF easily.
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3. outputs clauses encoding in # in’. This is a more complex task because the
resulting formula needs to be in CNF. Let ino, . . . , in,, be the bits of in, ing, ..., in,
be the bits of in’ and z,, fresh variables, then

n n
=0 =0
n
S aA\ [(Tni\/ inl v xai) A (ing V Taq) A (in, V T;)
=0
ANtV ing V xgiv1) A (inf V Taig1) A (ing V m)}
n

A\ )

=0

Where <* indicates equisatisfiability. This way we can express the inequality in a
number of clauses linear in the length of in.

We can check satisfiability of this new CNF ¢’ with a SAT solver of our choice (e.g.,
minisat). This CNF must not be satisfiable. If a satisfying assignment for ¢” is found,
this constitutes a counter example containing the two inputs into the program that lead
to the same output.

Running the tool and interpreting failed verification attempts. Our tool can be called
in two modes. The first mode takes CBMC’s output, the CNF ¢, in example.cnf and
generates the combined CNF ¢” in example.cnf.composed. To run our tool in this mode
the following command needs to be executed:

cnfcomposer.sh example.cnf

This CNF can now be checked with minisat for satisfiability. If minisat finds an as-
signment it will write that to example.cnf.composed.out. The second mode of our tool
interprets such an assignment of ¢’ and generates C-code that can be used to execute
the counter example and debug it. The following call generates ex_a.c and ex_b.c. Both
are the c files that contain code writing the counterexample into the in array from our
verification driver:

cnfcomposer.sh example.cnf example.cnf.composed.out ex_a.c ex_b.c

1.7 Alternatives and Related Work

This section is based on [9].

Functional verification and testing. Of course, it is possible to state and verify a
functional specification of the methods involved without resorting to the concept of
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information flow. However, such a specification would have to closely mimic the imple-
mentation and thus be complex and tedious to write (the same reasoning also applies
to functional testing). It would be difficult to understand it and ascertain its adequacy;
neither would it be possible to reuse it for another PRNG. It would also be challenging
to write down such a specification in existing languages due to the structure of the code.
The information flow specification, on the other hand, directly expresses the desired
property, is compact and easy to understand, and is nearly independent of the PRNG
implementation in question.

Statistical testing. Several statistical test suites exist for assessing the quality of ran-
dom numbers. Among the most popular are DIEHARD with its open source counterpart
DIEHARDER and the NIST test suite. The suites scan a stream of pseudo-random num-
bers for certain predefined distribution anomalies. At the same time, we are not aware of
recommendations on how the stream is to be produced. In practice, it appears custom-
ary to derive the stream from a single seed. The tests are repeated multiple times (with
different seeds) to increase the degree of confidence but the results between individual
runs are not cross-correlated. In any case, distinguishing a PRNG seeded with 8 byte of
entropy from a PRNG seeded with 20 byte of entropy would likely require a prohibitively
high number of tests.

Quantitative Information Flow analysis (QIF). Detecting entropy squandering can be
seen as an instance of the Quantitative Information Flow problem (QIF) concerned with
measuring leakage of secret information to an observer of the program output. Several
methods and tools for QIF exist, including [15, 14].

Yet, the landscape of available QIF analyses is not well-suited for the specifics of the
problem we face. Some techniques are only practicable for small leakage, or small/simple
programs. Some are not implemented or do not support real-world programming lan-
guages. Some only establish upper bounds on the leakage, while we need lower bounds,
as our observer is not an adversary. Given these limitations, the prospects of using
current QIF techniques for practical PRNG verification remain unclear at best.

High-level PRNG analysis. Apart from the above-mentioned [18], “modern” PRNGs
have been studied in, e.g., [6, 8, 2]. The perspective taken in the latter works is based on
elaborate attack models, where the attacker, for instance, can control the distribution of
the inputs used to seed the PRNG, view or even corrupt the internal PRNG state. The
analysis focuses primarily on design and high-level implementation aspects w.r.t. these
models and is not mechanized. In contrast, we do not consider attackers with advanced
capabilities, but our work closes the gap concerning low-level implementation aspects
with mechanized reasoning.
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2 Apache Harmony’s SHA1PRNG

Apache Harmony is a reimplementation of the Java Standard Library that was created
due to license issues. We started with the default secure PRNG from that library,
SHA1PRNG, because it is the PRNG that was responsible for the Bitcoin incident mentioned
above.

2.1 Structure of the PRNG

The PRNG consists of six methods in three classes, of which one class (SHA1_Data)
only consists of constants. The other two classes are SHA1PRNG_SecureRandomImpl and
SHA1Impl. SHA1PRNG_SecureRandomImpl is the main class, which contains methods to
seed the PRNG (void engineSetSeed(byte[] seed)) and to generate new random bytes
(void engineNextBytes(byte[] bytes)). Regarding our classification from Section 1.3.2
this PRNG would seed as SEEDING.4 and allow reseeding as ADD_ENTROPY.1 or
ADD_ENTROPY .3, because the PRNG only partially resets its state before adding more
seed material (i.e. the old seed data and some counters are kept). The PRNG holds
most of the internal state in a big int[] called seed. Its structure with and without the
flaw is shown in Figure 2.1, taken from [9].

Structure of the hash implementation. SHA1Impl is a partial implementation of the
SHA1 hashing algorithm. Its interface consists of two methods:

e updateHash(int[] intArray, byte[] byteInput, int fromByte, int toByte)
e computeHash(int[] arrW)

Both methods work on int[]s (intArray and arrW) that are structured like the state
shown in Figure 2.1. In fact the complete state array is passed to this function in
every call, when main the function SHA1PRNG_SecureRandomImpl.engineNextBytes uses
computeHash to generate random bytes.

Necessary changes to the PRNG for verification. The PRNG operates in a slightly
different mode, when seeded manually compared to self-seeding. But in that self-
seeding code there was the error that caused the Bitcoin incident. The code from
engineNextBytes that was wrong and caused the problem for the Bitcoin incident isn’t
even executed when seeding manually. In order to be able to prevent errors like the
one that caused the Bitcoin incident and because self-seeding is the recommended mode
of operation, we want to verify the code path used when the PRNG is self-seeding. In
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computation space for
seed 0...00 space #10 SHA1 result
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: 20 byte counter 0x80000000
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"aa,

seed counter 0x80000000

(a) Intended operation

0 1 2 3 4 5 6 7 8
counter 0x80000000 seed (rest) 0...00
8 byte

(b) Effect of the bug

Figure 2.1: Structure of the Android PRNG’s main array (1 word = 1 int = 4 bytes)
from [9]

order to do that, we have to slightly change the signature of engineNextBytes, because
we need the seed data as part of the signature to use it in the information flow contract.

We focus on the case when the engineNextBytes function is called for the first time,
does self-seeding and generates a first block of output. We want to specify information
flow with the initial entropy used in self-seeding so we had to make that data an addi-
tional parameter to engineNextBytes, so that we can talk about it in its specification.
The new method signature is then engineNextBytes(byte[] bytes, byte[] extSource),
where bytes is the array to place the random bytes into and extSource is the seeding
entropy. When engineNextBytes is called as we specify (PRNG not initialized yet, byte
arrays sane, not aliased, ...), the method ...:

1. ...takes the extSource and copies it into seed (Figure 2.1) by calling updateHash.
Internally updateHash packs every 4 bytes into one integer (as Java has 4-byte
integers). and stores those 5 integers in the internal state array.

2. ...calls computeHash on seed. The resulting hash is stored as 5 integers at index
82 in the same array (see Figure 2.1).

3. ...unpacks the calculated 5 integers into 4 bytes each of the nextBytes array.

4. ...copies those 20 bytes into the output array bytes.

Overall remarks on code quality. The code in the main methods is complex, dense
and hard to follow. Although there are comments all over the code, using jittering
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74 /*@ public normal_behavior

75 requires arrW.length==87;

76 ensures (\forall int i; 82 <= i & i <= 86; -2147483648 <= arrW[i] &
arrW([i] <= 2147483647 );

77 assignable arrW[16..79],arrW[82..86];

78 accessible arrW[0..79],arrW[82..86];

79 determines \pre( (\seq_def int i; 0; 5; arrW[il)) \by

80 \post ((\seq_def int i; 82; 87; arrW[il]));

81 */

82 static /*Q@helper*/ void computeHash (int[] arrW) {

Figure 2.2: The specification of the hash function

terminology and sometimes being inconsistent with code, they pose more questions than
they answer.

2.2 Information Flow Through the Hash Function

As mentioned above, the PRNG uses a version of the SHA1 hash function that has
been implemented specifically for this PRNG. While those methods do calculations as
described in the SHA1 standard they are not used to implement plain calculations of
the SHA1 function. E.g. the length of the current data is not encoded in the padding
and the function’s state is not reset after each calculated hash. However the functions
still pose much computational complexity.

Nevertheless want to specify the injectivity of this function. As its input and output
are both located in the seed array (input at offsets 0 — 15 and output at offsets 82 — 86)
we need to specify injectivity between those two intervals. However our input seed is
always placed into bytes 0 — 4 and the remainder of the input is only fixed data. The
JML* specification that describes this information flow (i.e. claiming injectivity) and
that states that the resulting integers are all in int range, is shown in Figure 2.2. It
specifies:

1. No exceptions can be thrown: normal_behaviour
2. The input array needs to have a length of 87 (as the structure shown in Figure 2.1).
3. It guarantees the resulting integers in the hash part of the array are in int range.

4. The function only writes to the parts of the array called “computation space” and
“SHA1 result”.

5. The function is injective from the input data (interval [0..4]) to the “SHA1 result”
(interval [82..861)

The slightly modified version of engineNextBytes can be proven to fulfill this specifi-
cation. Thereby we proof that this modified version hash has full information flow.
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2.3 Proof Outline

2.3.1 Difficulties during the Proof

Byte packing and unpacking. Besides the overall size and complexity of the program
under verification, SHA1PRNG, the packing and unpacking actions were the main prob-
lem. KeY cannot prove the injectivity through those actions as they involve bitwise or
operations, which cannot be easily represented in standard mathematical algebra. Fur-
thermore, in the original code those two actions are not in their own procedures, but
directly embedded into the body of the nextBytes function, so we can not annotate those
functions with their information flow contracts (as we did for the SHA1 implementation).
We solved this problem by writing rules for KeY specifically designed to transform those
formulas. The rules, together with example code, are shown in Figure 2.3 and Figure 2.4.

The “pack” rule (Figure 2.3) searches for the equivalence of two integers and replaces
it with the byte equivalences while requiring in an auxiliary goal, that the bytes are in
fact in byte range. The “unpack” rule (Figure 2.4) searches for the equivalence of the
second byte of the int and replaces it with the int equality while requiring an in auxiliary
goal that the other three bytes are equal as well.

Those rules have been proven with KeY’s rule justification functionality. Because KeY
still cannot prove the rules, the resulting proof obligation has been exported to the 73
prover where the correctness of the rule has been proven.

Choosing integer semantics. We need to setup KeY to use its overflow-checking integer
semantics. From this set of rules, we need to disable the rule that resolves casts to byte,
because the only casts to byte in the given program are used for doing the integer
packing. KeY’s default rule for byte casts is to add a "modulo 256” operation to it. This
is not beneficial for our proof as it only complicates the proof and brings Disabling this
default rule allows and resolving the casts with the unpack rule make the rule and its
manual application in the proof significantly easier.

2.3.2 User Interactions for the Proof with KeY

Proving the information flow contract for engineNextBytes results in a big formula in the
schema from Figure 1.3. This formula contains two code fragments twice for representing
the two executions of our program (in the schema called f). In order to keep track of
what happens here we introduce notation. h* and h® denote heaps in the two different
invocations. Let:

e hl, hg be the initial heaps at the beginning of engineNextBytes
e h_Before®, h_Before® the heaps before invocation of computeHash
o h_After®, h_After® the heaps after computeHash

o hY ,h’i the heaps when engineNextBytes returns.
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Rule:
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N
N

\find (

orJint (orJint (orJint (shiftleftJint (andJint (byteOb, 255), 24),
shiftleftJint (andJint (bytelb, 255), 16)),
shiftleftJint (andJint (byte2b, 255), 8)),
andJint (byte3b, 255))
orJint (orJint (orJint (shiftleftJint (andJint (byteOa, 255), 24),
shiftleftJint (andJint (bytela, 255), 16)),
shiftleftJint (andJint (byte2a, 255), 8)),
andJint (byte3a, 255))

)\sameUpdateLevel
\replacewith(byteOb=byteOa & bytelb=bytela

& byte2b=byte2a & byte3b=byt93a);

\add (==>

128
128
128
128
128
128
128
128

-128 <= bytela
-128 <= bytela
-128 <= byte2a
-128 <= byte3a
-128 <= byteOb
-128 <= bytelb
-128 <= byte2b
-128 <= byte3db

byteOa
bytela
byte2a
byte3a
byteOb
bytelb
byte2b
byte3b

PRI

& <
& <
& <
& <
& <
& <
& <
& <

Example:

10
11

12

public int pack(byte[]l b){

return ((b[0]J&0xFF) <<24) | ((b[1]J&0xFF) <<16) | ((b[2]&0xFF) <<8)

| (b[3]&O0xFF);

Figure 2.3: The new KeY rule representing injectivity of packing 4 bytes into an int

together with example code where the rule would be needed.

31



Rule:

1 \find(
2 javaCastByte (unsignedshiftrightJint (intb, 8))
3 = javaCastByte(unsignedshiftrightJint (inta, 8))
4 )\sameUpdateLevel
5 \replacewith(inta = intb);
6 \add( ==>
7 inInt (inta)& inInt(intb)é&
8 javaCastByte (intb)
9 = javaCastByte(inta) &
10 javaCastByte (unsignedshiftrightJint (intb, 24))
11 = javaCastByte(unsignedshiftrightJint (inta, 24)) &
12 javaCastByte (unsignedshiftrightJint (intb, 16))
13 = javaCastByte(unsignedshiftrightJint (inta, 16))
14 )
Example:
20 public byte[] unpack(int i){
21 return new byte[]l{(byte) (i>>>24),(byte) (i >>> 16), (byte) (i>>>8),
(byte)il};
22 }

Figure 2.4: The new KeY rule representing injectivity of unpacking an int into 4 bytes
together with example code where the rule would be needed.

Our proof follows this chain of implications:

bytes[x]@h% = bytes[x|QRY

%5 secd[s2. .87)@h After = sced[s2.87)Gh After’

) seed[0..5]@h_Before® = seed|0..5|@h_Be fore®

(ery) extSource[x|Qhd = extSource[x]@hl

Note that = corresponds to component-wise equality of arrays. Implication (x) is as-
sumed as injectivity of the hash function. Implications (pre) and (post)! are to be shown
during the proof.

To prove the big formula, we do the following:

1. Do symbolic execution for the code fragments and simplify the resulting formula.
Using KeY’s Strategy macro “Start auxiliary computation for self-composition
proofs” we do the simplification steps only once and then apply the result on
the two expressions in the main proof. This corresponds to simplification of the
function f from Figure 1.3.

2. Use the information flow contract for computeHash. This results in 3 subgoals:

!The names correspond to names given by KeY to those two subproofs. They seem swapped because
we are using the determines clause in opposite direction to the designers original intent.
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a) The first one can be closed automatically. This goal represents proving the
functional precondition of computeHash in both invocations (line 75 from Fig-
ure 2.2).

The remaining two goals represent full entropy flow up to and from the call to

computeHash.

b) We show that given two outputs of nextBytes are equal (bytes[x]@Qh% =
bytes[*]@hli), the “hash” part of the seed arrays after computeHash has to
be equal (seed[82..87|Qh_After® = seed[82..87)@h_After®). KeY calls this
goal “pre” and it corresponds to the implication (pre) from above. This part
represents full information flow from after computeHash to the function’s end.
To prove this claim several interactive steps are required.

i.

ii.

iii.

iv.

vi.

Instantiate the \forall in the term bytes[*|Qh¢ = bytes[+]@hY manually
20 times and remove unnecessary assumptions. This breaks the equality
into 20 byte equalities.

Apply auto-mode to simplify the formula, so that the instantiated byte
equivalences are simplified.

Apply “unpack”-rule on the 20 equivalences 5 times, which splits the
proof 5 times.

The resulting 5 auxiliary goals can be closed automatically because the
information that the other 3 byte pairs are equal is readily available in
the sequent.

Cut the proof into 5 sub cases that represent the 5 integer equalities of
seed[82..87]Qh_After® = seed[82..87)Qh_After®.

Close those 5 subgoals using auto-mode.

c¢) Closing the second goal (“post”) works symmetrically.

i.

ii.

iii.

1v.

vi.

Instantiate the \forall clause in seed[0..5]@h_Be fore®= seed|0..5]
@h_Before® 5 times and remove unnecessary assumptions.

Apply the auto-mode.
Apply the “pack” rule 5 times.
All 5 new auxiliary subgoals can be closed automatically.

Do a case splitting into 20 subcases one for each of the 20 bytes of
extSource[x]@Qhd = extSource[x]QhY.

Close all those 20 subgoals using auto-mode.

Thereby all goals are closed, the proof is completed and the information flow property
is proven for this PRNG.
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3 BouncyCastle’s DigestRandomGenerator

3.1 Structure of the PRNG

3.1.1 Class Structure

BouncyCastle’s PRNG is contained in a single class. Its outline is shown in Figure 3.1a.
Regarding our classification from Section 1.3.2 the PRNG seeds as SEEDING.3 and al-
lows reseeding as ADD_ENTROPY.1. The PRNG is parametrized with a Digest object.
This object wraps a hash function that is used inside the PRNG.

Before the PRNG can be used, it has to be seeded manually by calling addSeed-
Material(byte[]) or addSeedMaterial(long). The two methods are internally nearly
identical. For the sake of simplicity we consider only the byte[] version.

In order to acquire output the user then has to call nextBytes (byte[]) or nextBytes-
(byte[], int, int). nextBytes(byte[], int, int) gets a byte[] where the random
data should go, together with an offset and a length parameter, specifying the interval
that should be filled. nextBytes(byte[]) is a simple default parameter wrapper that as-
sumes the offset to be 0 and the length to be the array length indicating that the whole
array should be filled. We specify and prove information flow for nextBytes(bytel[],
int, int), because the other one can be inlined easily and then the specification of
the complex method can be used. When we verify our main method, which uses
nextBytes(byte[]), KeY inlines this method and uses the (proven) information flow
contract for nextBytes(byte[], int, int).

In our main method (Figure 3.2), we used this calling convention for operating the
PRNG. We verify information flow through this function in order to verify this PRNG.

#  org.bouncycastle.crypto

e u:urg.hnuncycastle.cr}rptu.prng 4 © Digest
« G DigestRandomGenerator |{},ﬁ, doFinal(bytel], inf) ir'|t|
@ ° DigestRandoemGenerator(Digest) o " getAlgerithmName() - String
@ addSeedMaterial(byte[]) : void | " getDigestsize() : int| )
@ addSeedMaterial(long) : void o " reset() : void
@  nedBytes(bytel]) : void e" update(byte] : m:nid|
® nexBytes(bytel], int, int) : void e update(byte[], int, int] : vu:uid|

(a) Outline of DigestRandomGenerator
(b) Outline of Digest

Figure 3.1: Outlines of the core interfaces of the BouncyCastle PRNG
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20 public static void test(byte[] seed, byte[] output, Digest d) {

21 DigestRandomGenerator drng = new DigestRandomGenerator (d);
22 drng.addSeedMaterial (seed);

23 drng.nextBytes (output) ;

24 }

Figure 3.2: The main function for the Bouncy Castle PRNG

35 pPublic static void testHash(byte[] seed, byte[] output, Digest d) {
36 d.update(seed, 0, seed.length);

37 d.doFinal (output, 0);

38 }

Figure 3.3: Example for the usage of the Digest interface

3.1.2 Thread Safety

For all PRNGs we consider only single-threaded invocations, because multi-threaded
invocations require specific tooling, are complex and often (as in this PRNG) not nec-
essary to look at: All public methods of the DigestRandomGenerator class are wrapped
in synchronized blocks on this. Also the this reference is not leaked in the construc-
tor. This pattern ensures that method (and constructor) calls to the PRNG are atomic.
Because of that, we can look at every parallel usage as a sequence of sequential method
calls.

We can thus assume that the PRNG is used by a single thread. Because KeY is
specialized on sequential programs, it currently has no rule for synchronized blocks
(except for empty ones). We remove those blocks and replace them with their plain
contents.

3.1.3 Structure of the Hash Function

The hash function that the PRNG uses is wrapped inside the Digest interface. An
outline of this interface is shown in Figure 3.1b. The methods that are actually used by
DigestRandomGenerator are highlighted.

This interface is stateful and streaming-based. This means the hash function has an
internal state that is updated by update (again with offest, length version and a default
parameter like nextBytes above) and then finally condensed into a hash by doFinal.
Calculating the hash resets the state of the hash function (as if one would be calling
reset), so that it can be used again cleanly. Normal use of the hash function would look
like the method in Figure 3.3.

3.2 Information Flow Through the Hash Function

Overview As for the other PRNGs we want to assume that the hash function used
in the PRNG is injective. This can be expressed by the means of an information flow
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26 /*@

27 requires seed != output;

28 requires seed.length == 20;

29 requires output.length == 20;

30 requires d.digestState != null;

31 requires d.digestState != seed;

32 requires d.digestState != output;

33 determines \pre((\seq_def int i; 0; seed.length; seed[i])) \by
\post ((\seq_def int i; O; output.length; output[i]));

34 */

35 public static void testHash(byte[] seed, byte[] output, Digest d) {

Figure 3.4: Specification for the hash function example code (Figure 3.3)

7 /*@ ghost instance final byte[] digestState = new bytel[5];x*/

Figure 3.5: Ghost field for modeling the internal state of the hash function

specification like determines x by hash(x). For our test function testHash this can be
expressed with the specification in Figure 3.4. The specification additionally contains
non-aliasing properties. Also we limit ourselves to 20-byte arrays, because 20 bytes is the
size of a SHA1 hash and using a small and constant length keeps the proof manageable.
Therefore also the getDigestSize method of the Digest interface is specified to always
return 20. With KeY the specification of the hash function example code (Figure 3.3)
can be proven to be correct using the specification of the Digest interface that we explain
in the following.

Specification of the hash function interface. Since the hash function interface is state-
ful, this internal state has to be expressed in the specification. We use a ghost field
digestState to model this internal state. A ghost field is a field that exists only for
verification and specification purposes. The declaration of this field in order to specify
the behavior of the Digest interface can be seen in Figure 3.5.

Now we specify the information flow behavior of the update and doFinal functions
in Figure 3.6. For update the specification states that all information from the input
parameter in (in the given range) and all information from the previous digestState
flows into the new digestState. For doFinal the specification states that all information
from digestState flows into the out parameter (at the given offset out0ff). Note that
there is no statement about the new contents of digestState. This is in consent with
doFinal automatically resetting the hash function and not preserving information from
the seed or the previous state.

Both specifications require “assignable” clauses. With assignable digestState[*]
in the specification we assure that no other global state apart from the contents of
digestState can be changed by the update function. Likewise the two assignable clauses
for doFinal assert that only the content of out and digestState can be changed by that
method.
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58 /*Q

59 normal_behavior

60 determines \pre((\seq_def int i; inOff; inOff+len; in[i])),
\pre((\seq_def int i; O; digestState.length; digestState[i]))
\by \post((\seq_def int i; O; digestState.length;
digestState[i]));

61 assignable digestState[*];

62 */

63 public/*@helper*/void update(byte[] in, int inOff, int len);
74 /%@

75 normal_behavior

76 requires outOff + getDigestSize() == out.length;

77 determines \pre((\seq_def int i; O; digestState.length;

digestState[i])) \by \post((\seq_def int i; outOff; outOff +
getDigestSize (); out[il));

78 assignable out [*];

79 assignable digestState[*];

80 */

81 public/*x@helper*/int doFinal(byte[] out, int outO0ff);

Figure 3.6: Specification of update and doFinal methods from Digest.java

24 //@invariant seed != digest.digestState;
25 //@invariant digest.digestState != state;
26 //@invariant digest.digestState != null;

Figure 3.7: The class invariants for Digest that we moved to DigestRandomGenerator

All methods of the hash function interface require a @helper annotation. This an-
notation prevents KeY from assuming class invariants (the Digest class has non-empty
default invariants) as precondition and requiring them to be verified as postconditions.
We need this annotation due to a limitation that prevents KeY from resolving the in-
variants of a class different from the one that currently being proved. The necessary
invariants have been moved to the DigestRandomGenerator class to work around this lim-
itation. Specifically it is the general non-null invariant that JML introduces by default
and non-aliasing invariants with the other arrays in DigestRandomGenerator (required to
be sure that all those arrays are actually different arrays and not the same array object
referenced by different fields).

Problems with the injectivity of hash functions due to domain sizes. Also note that
the information for the update method technically cannot be true, because a function
mapping a larger, finite input space to a smaller, finite output space cannot be injective.
This is a manifestation of the problem with assuming that a hash function is injective
that was mentioned in Chapter 1. We need to assure that the proof system doesn’t use
this contradiction by manual proof inspection.
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30 /*@

31 normal_behavior

32 ensures seedCounter == 1;

33 ensures stateCounter == 1;

34 ensures \fresh(seed);

35 ensures \fresh(state);

36 ensures this.digest == digest;
37 assignable this.x*;

Figure 3.8: The specification of the constructor of DigestRandomGenerator

11 /*@

12 requires seed != output;

13 requires seed.length == 20;

14 requires output.length == 20;

15 requires d.digestState != null;

16 requires d.digestState != seed;

17 requires d.digestState != output;

18 determines \pre((\seq_def int i; O; seed.length; seed[i])) \by

\post ((\seq_def int i; O; output.length; output[i]));
19 */

Figure 3.9: Main proof goal for the BouncyCastle PRNG from Launcher. java

3.3 Specification for the Constructor of
DigestRandomGenerator

As one already could see in Figure 3.2, we call the constructor of DigestRandomGenerator
in our main method. We do that instead of specifying an initial clean state as pre-
condition for our main method, because the constructor establishes such a clean state.
The specification of the constructor is shown in Figure 3.8. It ensures the initial values
for the counters (required to decide whether certain conditionals are taken), fresh state
arrays (for proving the non-aliasing properties and invariants) and that the parameter
Digest object is installed into its designated field.

3.4 Information Flow Target

The main proof goal is the information flow through the test method (see Figure 3.2)
that calls the PRNG form an external class. The method receives the seed, an array
to write the output to, and a digest object. It then creates a new PRNG object, seeds
it with the given seed and let’s the PRNG generate random output. The required
specification for this method is straight forward. All information from seed needs to
flow into output. This information flow contract is shown in the specification of this
method (see Figure 3.9). The only remaining parts of that specifications are nonNull
checks, non-aliasing checks and checking that the arrays have the length of exactly one
digest. The digest length has been fixed to 20 bytes in order to get the proof manageable.
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a @ test(byte[], byte[], Digest) : void - org.bouncycastle.crypto.Launcher
id DigestRandomGenerator(Digest) - arg.bour stle.crypto.prag.DigestRandemGenerator
& getDigestSize() : int - org.bouncycas pto. matches)
4 @ addSeedMaterial(byte[]) : void - org.bour 5
a @ digestUpdate(byte(]) : void - org.bour
& update(byte(], int, int) : void - org.bouncycas
a @ digestDoFinal(byte[]) : void - orgbou
&' doFinal(byte[], int) : int - org.bounc, ypto.Digest
4 @ nextBytes(byte[]) : void - org.bouncycastle.crypte.prng
4 @ nedBytes(byte[], int, int) : void - org.bounc
4 @ generateState() : void - org.bouncycas

o.prng.DigestRandomGenerator (2 matches)
le.crypto.Digest
to.prng.DigestRandomGenerator

DigestRandomGenerator

rypto.prng.DigestRandomGenerator
crypto.prng.DigestRandomGenerator (2 matches)
4 @ digestAddCounter(long) : void - org.boun
& update(byte) : void - org.bounc
4 @ digestUpdate(byte[]) : void - org.bour
& update(byte[], int, int) : void - org.bouncyc
4 @ digestDoFinal(byte[]) : void - org.bou
& doFinal(byte[], int) : int - crg.bour
4 @ cycleSeed(): void - org.bouncyc
4 @ digestUpdate(byte[]) : void - org.bounc,
& update(byte[], int, int) : void - orgboun
4 @ digestAddCounter({long) : void - org.bou
&' update(byte) : void - org.bounc
4 m digestDoFinal(byte[]) : void - org.boun
& deFinal(byte[], int) : int - org.bouncyc

stle.crypto.prng.DigestRandomGenerator
to.Digest

to.prng.DigestRandomGenerator (2 matches)
stle.crypto.Digest
to.prng.DigestRandomGenerator

o.Digest

astle, g.DigestRandomGenerator

pte.prng.DigestRandomGeneratar
crypto.Digest
to.prng.DigestRandomGenerator

castle.crypto.Digest

ipto.prng.DigestRandomGenerator

.crypto.Digest

Figure 3.10: The call hierarchy of the BouncyCastle PRNG.

3.5 Proof QOutline

The proof has been carried out using KeY, by proving all the contracts and subcontracts
individually. KeY has been modified to not apply information flow specific rules (the
ones that use the RELATED_BY-markers) automatically, because it often applied them in
cases where they didn’t help the proof. An overview of all proved sub parts is shown in
Figure 3.10.

Integer arithmetics and loop treatment. The only method involving bit arithmetics
is digestAddCounter (long). Thus we use “javaSemantics” for this method and “arith-
meticSemanticsCheckingOF” for all other methods. Because all loops have finite and
small borders we can switch loop treatment to “Expand”.

Proving the contracts. Proving works similar for most methods. Generally one can
start by using the “Start auxiliary computation for self-composition proofs” macro as
we did for the Apache SHAITPRNG. Then one can apply KeY’s automated strategy,
finish the auxiliary calculation and use the new rule from the auxiliary computation in
the main proof. Now KeY simplifies that new formula so that all RELATED_BY predicates
are on top level. This is necessary in order to apply the RELATED_BY rules, because they
search for the markers only on top level. These rules are now applied (manually) to a
pair of markers from the two different invocations that are their syntactic counterpart.
From there on, KeY manages to close all proofs on its own.
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4 OpenSSL'’s ssleay rand

4.1 Structure of the PRNG

Like BouncyCastle’s DigestRandomGenerator OpenSSL’s PRNG is also independent from
its hash function. The API is similar. The relevant functions are rand_add (const void
*buf, int num, double add_entropy) to add entropy and rand_bytes(unsigned char
*buf, int num) to generate output. The methods are shown as simplified pseudocode
in Figure 4.1.

When entropy is added using rand_add, it is split into 20-bytes blocks and hashed
blockwise into a static array of 1043 bytes, that is called state. Each addition of a block
changes at most 20 bytes of state. The data is also hashed into the 20-byte array md. To
generate output we select 10 bytes of state and hash those together with two counters
into md. Then we split the resulting hash and use 10 bytes as output and XOR the
other 10 bytes back into state. This process is repeated until enough output bytes are
generated. If the requested amount of output bytes is not a multiple of 10, superfluous
bytes are discarded.

Regarding our classification from Section 1.3.2 the PRNG seeds as SEEDING.5 and
allows reseeding as ADD_ENTROPY.1.

Structure of the hash implementation. The hash function interface visible to the
PRNG are three methods: MD_Init, MD_Update and MD_Final. They operate similarly
to the hash function in BouncyCastle, but in this case MD_Final doesn’t reset the hash
function, but leaves it in an undefined state. MD_Init has to be called on the hash
function object to reuse it for another hash calculation.

4.2 Information Flow Through the Hash Function

In order to assume full information flow through the hash function, we had to replace
it with a dummy variant, that is aware of the manner the PRNG uses it. To touch the
surrounding code as little as possible, we created a new OpenSSL hash function and told
the PRNG to use that hash function.

In order to implement our own hash function, we need to provide init, update and
final. Those methods then get wrapped into their MD_ variants that are used by the
PRNG.

The hash function we used is shown in Figure 4.2. It uses XOR to fold longer inputs
into its hash. Additionally it keeps two counters:
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1 long md_count_O0;

2 long md_count_1;

3 char state[1043];

4 char md[20];

5 int state_index;

6 1int initialized;

7

8 void rand_add(const void *buf, int num) {

9 char local_md[] = copyOf (md);

10

11 for(int i = 0; i < num; i += 20) {

12 local_md = hash(local_md

13 | statel[state_index...(state_index+20) 7 1043]

14 | buf[i..min(i+20,num-i)] | md_count_O | md_count_1);
15 md_count_1++;

16 state[state_index...(state_index+20) % 1043] ~= local_md;
17 }

18 md "= local_md;

19 }

20

21 void rand_bytes(const void *buf, int num) {

22 if (!initialized) stirr();

23 char local_md[] = copyOf (md);

24 int i = 0;

25 while (num > 0) {

26 local_md = hash(local_md

27 | md_count_O | md_count_1

28 | state[state_index...(state_index+10) % 1043] );
29 state[state_index...(state_index+10) % 1043] ~“= local_md[O.
30 state_index = (state_index + 10) % 1043;

31 buf[i..i+min(num,10)] = local_md[10..10+min(num,20)];
32 num -= 10;

33 i += 10;

34 }

35 md = hash(md_count_O | md_count_1 | local_md | md);

36 )
Notation
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.10];

e buf[a..b] denotes the sub-array of buf starting with a and ending with b (exclu-
sive). If b<a the expression denotes the sequence starting with b over the sequence’s
end up to the element before a. With that syntax, buf is treated as a cyclic array.

e hash(alblc) denotes the hash of the concatenation of a, b and c.

e Array action like assignments and XORs are to be understood component-wise.

Figure 4.1: Simplified pseudocode of the OpenSSL PRNG
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162
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164

178

180
181
182
183

190

#define SHA_DIGEST_LENGTH 20
#define SHA_CBLOCK 20

// Counts the invocations of this hash functions
static int hash_function_invocation_count;

static int init (EVP_MD_CTX *ctx)
{

hash_function_invocation_count++;

memset (ctx->md_data,’\0’, SHA_DIGEST_LENGTH + 1);
return O0;

}

static int update (EVP_MD_CTX *ctx,const void *data,size_t count)
{
char pos = (((char#*)ctx->md_data) [SHA_DIGEST_LENGTH]) ++;
size_t 1ij;

for (i = 0; i<count; i++)
{
((char*)ctx->md_data) [(i + pos) % SHA_DIGEST_LENGTH] ~=
((char*)data) [i];

return O;

}

static int final_fake (EVP_MD_CTX *ctx,unsigned char *md)
{
((char*) ctx->md_data) [SHA_DIGEST_LENGTH] = O0;
size_t 1i;
int off = 1;

if (hash_function_invocation_count == 3){
off = 10;

}

for (i = 0; i<SHA_DIGEST_LENGTH; i++)
{
md[(i + off) % SHA_DIGEST_LENGTH] = ((char*)ctx->md_data)[i];
((charx*)ctx->md_data) [i] = 0;
}

return 0;

}

Figure 4.2: A stripped version of the dummy hash function we used for OpenSSL.
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9 extern int initialized;

42 RAND_add (in, INPUT_AMOUNT, 1);
43 initialized = 1;
44 RAND_bytes (out, OUTPUT_AMOUNT) ;

Figure 4.3: The calls to the OpenSSL PRNG from its verification driver

1. pos identifies different calls to update. We use it to XOR different data into different
positions (line 164) to prevent canceling out of same data if it is fed into update
multiple times.

2. hash_function_invocation_count identifies different calculations. We need this to
make a slightly different output in the 3rd calculation (Figure 4.2 line 183). This
is required because OpenSSL outputs two “half-hashes” (see Figure 4.1 line 31)
and we need to present the second half as the second hash.

4.3 Verification Driver

We want to verify information flow through the first PRNG cycle, that is a call to
rand_add and a call to rand_bytes. But the PRNG seeds itself (see item ADD_ENTRO-
PY.1). This additional entropy that is not known to our prover needed to be removed.
We can ignore the code path for self-seeding, because it consists only of gathering OS-
specific entropy and adding it to the PRNG state with the rand_add function that we
also use to add our entropy manually. We do this by suggesting the PRNG that it has
already been initialized. The PRNG stores this information in a static variable. This
prevents us from accessing it. We removed the static declaration so we could declare an
extern variable that represents the same memory. We did this in line 9 of our verification
driver shown in Figure 4.3. The shown code is then used inside the verification driver for
proving injectivity shown in Figure 1.5. Additionally we had to make sure that all code is
compiled (and verified) using the PURIFY preprocessor macro. This removes uninitialized
buffers as entropy sources of the OpenSSL PRNG.

4.4 Proof QOutline

4.4.1 Problems with the Original Source Code

The next step is to make CBMC translate this program into the CNF. While doing so,
we ran into two problems.

Helping Constant Propagation. OpenSSL uses structs of function pointers when ac-
cessing e.g. the hash function. This indirection should be constant for all our use cases.
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264 #ifdef __CPROVER__
265 CPROVER_assert(m.digest==EVP_shal_fake () ,"xx");

266 m.digest=EVP_shal_fake ();
267 #endif

Figure 4.4: An example for helping constant propagation in md_rand.c.

We use code like show in Figure 4.4 to show CBMC what the value of a certain vari-
able (in that case a struct of function pointers) will be. We prove all the assertions by
proving the whole verification driver where the assert(0) at the end has been removed
(check can be executed with the sanity target of our Makefile). After having proven the
assertion we can safely add the assignment (the EVP_shal_fake() just returns a constant
value).

Preventing Pool Stirring. When used the first time, the OpenSSL PRNG “stirs” its
state, so the random data gets “’evenly distributed’ through ’state’, our randomness
pool” [20]. This process involves hashing data multiple times and XORing it all over the
state. Those calculations make our proof far more difficult if not impossible. Probably
we could incorporate this stirring in our dummy hash function and by that prove that
also with stirring all of the entropy could theoretically come out of the PRNG again. We
didn’t do that, because it would increase the required complexity of the dummy hash
function to an extent that would go far beyond the scope of this bachelor thesis. For the
proof in this thesis, we disabled stirring of the pool as shown in line 422 of Figure 4.5.

4.4.2 Conducting the Proof

Doing the proof now works as outlined in Subsection 1.6.2. We verify that all assertions
hold by removing the assert(0) from the verification driver and check that the resulting
formula is unsatisfiable. For an additional sanity check, we then add the assert(0) again
and check that now the formula is satisfiable. Finally we construct the self-composition
of that formula with our tool and check that this formula is unsatisfiable.

4.4.3 Conclusion from the Proof

By completing the proof we would expect the output to contain 20 bytes of entropy.
However, OpenSSL is not too gentle with the hashes of our dummy hash function.
OpenSSLs way of generating output is similar to the example in Subsection 1.4.4, that
is OpenSSL uses two partial hashes as output. As explained in the example, when seeded
with 20 bytes of entropy the expected entropy in the first 20 bytes of the PRNG’s output
is in fact only 15 bytes, but the maximum entropy is 20 bytes. This issue and its impact
need further investigation, which we leave for future work.
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422 while (n > 0 && O0)
423 {

424 #if MD_DIGEST_LENGTH > 20

425 # error "Pleaseyadjust DUMMY_SEED."
426 #endif

427 #define DUMMY_SEED ".................... " /* at least MD_DIGEST_LENGTH x*/

428 /* Note that the seed does not matter, it’s just that

429 * ssleay_rand_add expects to have something to hash.
*/

430 ssleay_rand_add (DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);

431 n -= MD_DIGEST_LENGTH;

432 }

Figure 4.5: The disabled pool stirring code from md_rand.c.
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5 Conclusion

Formal verification techniques are suitable for verifying PRNGs. We verified 3 real-
world PRNGs for their correctness regarding using all entropy that is supplied to them
when seeding. In the cases of the two that contained real-world bugs, we would have
discovered those bugs because our proofs would have failed if those bugs were in the
source code. The experiment show that formal verification can detect such problems
and reduces the chances of such bugs.

Verifying PRNGs is possible in a reasonable amount of time. For every PRNG the
main effort went into understanding how the PRNG is designed to operate. Specifying
the desired property was similar for all PRNGs and therefore an easy task. Other
problems were caused by monolithic and dense code style. They could have been avoided,
if the PRNGs source code would have been well-structured. A code maintainer of the
original code could clean up and modularize the original code to facilitate such proofs.
Verification would be an incentive to keep the code well-structured. A good example
for this is the OpenSSL PRNG where especially factoring out “pool stirring” would be
beneficial. BouncyCastle’s DigestRandomGenerator was by far the best-structured PRNG
of the ones analyzed. The remaining work, resolving, debugging and circumventing other
verification failures, is often manageable within a few days. Overall we could probably
verify a new PRNG, that is not too awfully structured, in 1-2 weeks.

Proofs can be integrated into existing regression detection. While the two proofs for
Java programs require user-interaction, our proof for OpenSSL is fully automated and
could be incorporated in the OpenSSL regression test suite and regularly re-checked, if
there is still maximum entropy flow. Changing core parts of the PRNG could then require
an adjustment to the dummy hash function but that encourages additional thinking on
whether the code changes are justified.

“not

Future work. More properties of the PRNG could be specified and verified, e.g:
knowing all previous outputs and the seed, the n'" output block of the PRNG contains
maximum entropy” or the property that “stirring the pool” tries to ensure could be

specified and verified.
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