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Abstract. In this paper we will first show where random numbers are
used in today’s applications and look at the typical design of a random
number generator (RNG) while considering problems that might arise
from such a design. Based on this analysis, we will present several dif-
ferent high-profile bugs in applications using random numbers that are
caused by improper use of RNGs and their impact on the applications.
For example we will cover a problem that existed in Debian’s OpenSSL
package for years and that has caused RSA keys generated with that
package to be extraordinarily weak and therefore unsuited for use in
encryption.
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1 Introduction

In today’s programming languages acquiring seemingly random numbers is as
easy as a simple standard library call. But for some applications these random
numbers are simply not good enough. There have been several major problems
due to designing and implementing the random number generator (RNG) wrong
or due to improper use of the RNG’s output. In order to understand the attacks
and problems that will be presented in this paper, we will start by giving an
overview over typical uses of random numbers and what the risks of these appli-
cations might be. Then we will show, how hard it is to measure the amount of
randomness in given data (and hence the quality of random data) and what ap-
proaches are taken to do so. Those observations will lead to the question of how
to generate good pseudo random numbers and how todays RNGs work. Based
on this overview of principles we will look at real-world problems to understand
in which ways an application using random numbers may break.

2 Applications of Random Numbers

Random numbers are used in a broad range of applications. These range from
cryptographic applications and Monte Carlo algorithms that are dependent on
random data to games where events are triggered at random or a program that
displays a random quote on startup. The magnitude of consequences of bad
randomness varies with different kinds of uses of random data. This paper will
focus on applications, where bad randomness has high impact on the operation
of the program.



2.1 Cryptography

In cryptography, randomness is primarily used with two aims. The first one
uses randomness as data that is not known to an attacker who knows how the
application operates. The second one uses randomness to generate numbers that
need to be unique randomly in order to make the reuse of such numbers extremely
improbable.

One of the main uses of cryptography is establishing connections that are
confidential and of integrity. Establishing confidentiality might be achieved by
means of encryption. In order to encrypt data from an attacker, it is necessary
to choose a secret key at random. This prevents the attacker from taking any
advantage of knowing the encrypted data. Bad randomness leads to predictable
keys and therefore breaking the confidentiality of the connection. Also initial-
ization vectors for encryption algorithms need to be chosen unique, which is the
second of the mentioned aims of using random data.

For establishing integrity, signatures might be used. But some signature al-
gorithms depend unique numbers. The DSA algorithm that creates digital sig-
natures to ensure integrity requires such unique numbers. Repeating numbers
can result in losing the private key to an attacker who can then create signatures
on his own. This breaks the integrity of the connection.

2.2 Monte Carlo Algorithms

Monte Carlo algorithms are, by definition, algorithms that require random data
to operate. In order to see what happens when bad randomness is used, consider
a Monte Carlo algorithm that calculates π. The algorithm repeatedly selects two
random floating point numbers x, y in [0, 1) and checks, if x2 +y2 < 1. The ratio
of points in the circle to total points converges to π

4 , if good random numbers
are used. If the points are not evenly distributed but appear in some kind of
pattern the expectation for the ratio might be different. Bad randomness used
in Monte Carlo algorithms may result in slow convergence, no convergence or
even convergence to another number.

2.3 Online Games

Even for online (multiplayer) games randomness may be of the essence. Infor-
mation about how a card deck is shuffled or what a software dice will roll might
be critical for a player to win a game. If the game is about money, having good
randomness is directly about winning or losing money. An online poker game is
an example for money that is directly protected by a good shuffled virtual deck.

3 Measurement of Randomness

In order to talk about good randomness and bad randomness, it is important to
know what is meant by those terms. This quality of randomness can be measured
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in bits by the means of Shannon entropy H(X) of a random variable X:

H(X) := −
∑
x∈X

P[X = x] · log2 P[X = x]

The remaining question is, what exactly is the random variable to analyze. Con-
sider this string of bits as being the output of a RNG:

S1 := 11111111110101111001010001111111111011100. . .

One observes very easily that 1s appear more frequently in S1 than 0s. Therefore
the entropy isn’t maximal, when considering every bit as independent probe of
the random variable. But now consider this other string:

S2 := 00000001000000000101111111110011111111111. . .

In S2 1s and 0s appear approximately of equal count. So measuring entropy as
for the previous string, by simply considering the frequency of the 1s and 0s,
doesn’t fit this example. Here the distribution of pairs of consecutive bits would
yield more detail by showing that this would be another case of non-maximal
entropy.

As one can see, determining the quality of random data can be interpreted
as finding patterns in the data and using heuristics to detect common mistakes.
Therefore several individual test suites have been developed that all aim to detect
different patterns.

The big test suites out there are the DIEHARD(ER) Test Suite [4] and the
NIST Test Suite [10]. They contain several creative tests that all aim to detect
different patterns, such as:

Birthday spacing draws probes in a finite interval and checks if the distribu-
tion of the distances between them is close enough to the expected theoretical
distribution.

Run lengths draws floats in [0, 1) and counts the lengths of sequences of in-
creasing and decreasing values (called “runs”) and checks their distribution.

Pattern frequency looks for the distribution of patterns of longer length.
Binary matrix rank fills a binary matrix with the random stream and deter-

mines its rank.
3Dspheres test draws randomly positioned spheres in a cube and checks the

distribution of their distances.

All those tests are executed repeatedly on various samples of outputs of RNGs.
If some of them yield bad results in many samples it’s very likely that the RNG
has a systematic error. So all these tests can only be heuristics to identify data
that has an observable pattern. A good definition for pseudo random numbers
is therefore: “A generated stream is of good randomness, if an observer with
limited resources can not distinguish it from a real random stream”.

To understand those systematic errors or patterns better, we will have a look
on how a random number generator works and where errors can arise.
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4 Generator Principles

A RNG’s task is always the same: Take a small amount of entropy and stretch it
out in a longer byte stream. To achieve this, many RNGs use the same principle.

Those RNGs consist of an internal state called xi and a permutation func-
tion f . The RNG then works in cycles, where a new internal state (xi+1) is
generated in each cycle with xi+1 = f(xi). This principle is illustrated in Fig-
ure 1.

   state x

1. seeding

2. permutation with f

3. output rand 

i

i

Fig. 1. Principle of a typical random number generator

When a new RNG is initialized, it starts at stage 1 where the random num-
ber generator is seeded. This describes the process when the generator gathers
initial entropy. This part is required to make the output unpredictable even if an
attacker knows the structure of the whole generator. Typically a random number
generator initializes the whole internal state (x0) with entropy. Real world sizes
of the internal state are currently around 16-20 bytes.

Then stages 2 and 3 are repeated while more random numbers are needed.
These two stages consist of updating the internal state by calculating xi+1 =
f(xi) and then determining a part of the internal state xi+1, that is being de-
livered to the application.

This is already a consideration for the designer of the RNG: If the RNG uses
too much of its internal state it may risk becoming predictable. If the RNG uses
too little of its internal state, the output is not random from the beginning. It is
essential that there is maximal entropy inflow while seeding and good (not too
much and not too little) entropy outflow while working.

To show how this balance can be achieved in reality we’ll present two different
types of pseudo random number generators.

4.1 Linear Congruence Generators (LCGs)

In this special type of RNGs the permutation function takes the form

xi+1 = (xi · a+ c) mod m
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where a ∈ N, c ∈ N0 and m ∈ N. In typical implementations, m is a power of 2
and the modulo operation is implemented implicitly by letting the corresponding
variable overflow.

The simplicity of this kind of generators has made them very easy to analyze
completely. Theorem 1, proved by Hull and Dobell in 1962, shows how to choose
the constants perfectly. On the other hand, the simplicity of its design makes
LCGs also easy to attack.

Theorem 1 (Hull-Dobell Theorem [5]). An LCG has a full period length of
m, if and only if all of the following is true:

1. c and m are relatively prime.
2. a− 1 is divisible by all prime factors of m.
3. a− 1 is a multiple of 4 if m is a multiple of 4.

Let’s have a look at the output of an LCG in order to examine its weaknesses.
In Figure 2 a very small LCG (13 bit of internal state) has been called 512 times
to output a value in [0, 512). The output of each call has been drawn as a single
point. On the horizontal axis is the different call, on the vertical axis the outputs
of the random number generator.

Although the output looks random at first glance, one can observe the very
small sub-periods even though the random number generator has the maximal
possible period length of 8192.

Fig. 2. 512 outputs (i, randi) where randi := xi mod 512 and xi+1 := xi · 4805 +
83 mod 8192

Although this observation makes the output look bad, let’s have a look at the
correlation between two consecutive outputs of this LCG. Figure 3 shows this
correlation. For this diagram an x and y value in [0, 512) are randomly chosen
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Fig. 3. 512 outputs (randi, randi+1) where randi := xi mod 512 and xi+1 := xi ·4805+
83 mod 8192

and the point with these coordinates is shown on the diagram. One can now see
the output of the RNG randi+1 depending on its previous value randi.

The reason why all points generated this way are on a finite set of hyperplanes
is clear when you take a look at the generating equation. It’s principally a planar
equation with an additional modulus operation.

As one can see randomly selecting uniformly distributed points on a plane is
a task where a LCG is a bad choice for.

The fact that there is a pattern in the output of the random number generator
is inherent to the problem. An RNG has a finite amount of entropy and therefore
can only produce a finite amount of different output streams. The best chance
a random number generator has is to hide its pattern so well that it is hard to
compute how the pattern will continue. This leads directly to another class of
RNGs, namely hash-based ones.

4.2 Hash-based Generators

In this type of RNG the permutation function f is being chosen so that it contains
a cryptographic hash function. In order to understand the benefit a random
number generator can get from the hash function, it’s essential to understand
the properties of a hash function. Here we will use that a hash function is . . .

. . . a one-way function It is hard to calculate x = f−1(y) for a given y

. . . collision resistant It is hard to calculate x for a given y with f(x) = f(y)

The property of being a one-way function ensures that no old outputs of the RNG
can be calculated, if the RNG’s internal state gets known to an attacker. In order
to calculate an old value, the attacker has to derive an old internal state, which
is exactly the problem of reversing the one-way function. The collision resistance
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helps preventing an attacker from combining the knowledge that he gets from
different observations of the RNGs output to a combined knowledge over the
internal state of the generator.

Summing it up, a RNG based on a hash function is better suited for the
use in an application where good randomness is important, because the prop-
erties of the hash function prevent the attacker from deriving statements about
consecutive output of the RNG, if the hash function is secure.

5 Attacks

In this section we present the differences and similarities between different kinds
of attacks against the scheme that most applications use when dealing with
random numbers. This common scheme is shown in Figure 4. The figure shows

application      key,
...

entropy entropy entropyRNG

Fig. 4. Scheme of applications using RNGs and the flow of entropy through them

that in most systems entropy flows into the RNG from outside the system. This
is the RNGs seeding process. The RNG then uses this entropy to distribute it
over a longer byte stream in a way that is computationally hard to reverse. This
byte stream is then used by the application that transforms it into a random
object. This might be a random prime (for a random key), a random point on
a plane (for Monte Carlo algorithms using such points), or a card deck for an
online poker game. For analyzing problems in such programs, we will start at
the beginning of the entropy flow: the RNGs seeding.

5.1 Attacks on Entropy Flow into the RNG

The main problem of entropy flow into the RNG, is that the inflow might be too
low. It is important that enough entropy is gathered here, because entropy can
not be increased by computation and therefore the amount of inflow is a limit of
the entropy available to the application. Problems reducing the entropy inflow
are typically caused by bugs in the application.

Such bugs may occur, because it is still default or fallback behavior to seed
the RNG with low entropy. Often these default RNGs use the system time as
entropy source. That source doesn’t contain much entropy, because the current
system time, which is probably close to the real time, is known to an attacker
with some resolution. So the only remaining entropy of such a seed are its last
few digits. Therefore the resolution of the clock used for seeding is important.
Java 8 seeds its default RNG with System.nanoTime(), which guarantees no
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specific resolution of the timer at all [6], so therefore we have no guarantees on the
amount of entropy that is contained in the seed. Visual Basic’s Randomize() also
seeds with an arbitrarily-resolved system time [11] when called with no explicit
seed. Such default implementations have been used in many old implementations
such as the Poker game analyzed in [1]. Nevertheless both documentations (Java
and Visual Basic) strongly recommend to use other RNGs than the default one
when good quality of randomness is required.

A more important and recent example of reduced entropy inflow was a bug in
Apache Harmony’s implementation of a SHA1-based RNG. This incident is more
significant than the problem mentioned above, because this RNG has served as
the default secure RNG on all Android OS based devices. The bug causes the
RNG to be seeded with 20 bytes of system entropy, of which 12 bytes are acci-
dentally overwritten by the RNG before being used as seed. Thus, the remaining
entropy is quite high with 8 byte compared to what is left when seeding with mil-
lisecond resolved system time, but it is still significantly lower than the promised
20 bytes.

An even more significant bug of this category has been discovered in the
Debian-maintained version of the OpenSSL package. A developer had asked on
the OpenSSL mailing list, whether he could remove accesses to uninitialized
memory in OpenSSL’s RNG. As uninitialized memory was used as a secondary
source of entropy in OpenSSL’s RNG he was told that he could safely remove
the mentioned reference. Accidentally the Debian maintainer removed a second
access to uninitialized memory that was used to handle the main entropy inflow
into the RNG. Consequently all entropy inflow has been cut off, except the
current process’ identifier that holds at most 16 bit of entropy. As this RNG is
often used to generate cryptographic keys for server applications, many server
administrators were required to regenerate all keys that were generated while
the RNG was vulnerable.

5.2 Attacks on Entropy Flow out of the RNG

This category of problems covers the part where the applications transfers the
randomness into its required random object. In the case of the first example, this
random object is a deck of playing cards that should be shuffled for the online
poker game that has been analyzed in [1]. The code in Listing 1.1 shows how
the original algorithm worked.

This algorithm suffered from two problems: The first problem is an off-
by-one error. When trying to select a random number in [1, 52] the author of
the algorithm accidentally selected only a number in [1, 52), because the func-
tion random(x) returns a random number in [0, x). This finally yields in pre-
venting all shuffles that have card 52 at place 52 from occurring. This bug is
not so severe that it is clearly visible in a random output, but it decreases the
randomness of the output.

The other problem arises from the way how the cards are shuffled. Because
any card may be randomly swapped with any other card some decks can be
generated with different random input. In the case of this shuffle function, this
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Listing 1.1. How to not shuffle cards

// F i l l the deck with unique cards
f o r ( i n t c t r = 1 ; c t r <= 52 ; c t r++){

card [ c t r ] = c t r ;
}

// Randomly rear range each card
f o r ( i n t c t r = 1 ; c t r <= 52 ; c t r++) {

i n t random number = random (51) + 1 ;
i n t tmp = card [ random number ] ;
card [ random number ] = card [ c t r ] ;
card [ c t r ] = tmp ;

}

flaw results in a non-uniform distribution of the decks that even further reduces
the remaining entropy in the generated deck.

This shows the general 2 problems, that such a transformation function might
have that result in the reduced randomness: Leaving some results out (loss of
surjectivity), and retuning some results for multiple different inputs (loss of
injectivity).

The second example of what can go wrong with the entropy outflow of the
RNG is that the RNG might not able to hold onto parts of its entropy long
enough, because there is too much entropy outflow. Figure 5 shows the entropy
remaining in the given 2 LCGs (the internal state is 13 bits) and how this
entropy is reduced by observing the LCGs’ selection of a number in [1, 52].
Although both LCGs fulfill Theorem 1, one of them is able to hold onto some
fractions of its entropy longer than the other one. So still with knowing of how
to achieve maximal period length, it is still a question how much information
two consecutive outputs should have in common, and how much entropy should
be preserved in the RNG for later use.

5.3 Attacks due to Misperceived Resource Bounds

This third kind of problem focuses on the incident with the Dual EC [2] RNG.
The Dual EC RNG is basically a hash-based RNG, where the hash function is
based on elliptic curve mathematics. Its one-way property however depends on
the attacker not knowing numbers that help to invert this function easily.

In the case of the curves used for the Dual EC RNG standard, it is not clear,
how the curves were selected, and if anyone knows the numbers that would help
reversing the hash function for which they are used. This could be a backdoor
in the RNG definition itself.

The current state of Dual EC in different SSL implementations in 2013 has
been analyzed in [2]. In the BSAFE library, dual EC is correctly implemented
and could therefore be attacked if the secret constants are known. In OpenSSL,
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Fig. 5. The entropy remaining in the given LCGs after different counts of output of
the LCG (numbers in [1, 52]) have been observed. Measured with CHIMP [3]

a small bug prevents usage of Dual EC, if that bug is not fixed locally. In Mi-
crosoft’s SChannel library, the implementation is not conforming to the standard
because it leaves one computation out. However this bug does not prevent at-
tacks but facilitates them.

For a successful attack on the Dual EC RNG an attacker is required to
see approximately 30 bytes of consecutive random data to calculate the internal
state of the Dual EC RNG. Therefore a proposed TLS-Extension called Extended
Random is interesting in this context, because it basically increases the number
of visible random bytes in the connection and therefore facilitates the usage of
the backdoor, if it exists.

6 General Prevention Techniques

To generally detect bugs like the ones mentioned above, it is essential to know
where how much information in the application should flow and is flowing.

Several programs exist that measure entropy flow in programs (e.g., CHIMP [3],
leakWatch [3], QIF/SAT [9], QIF/Poly [8]). Some of them measure the entropy
flow exactly by considering all execution paths (e.g., CHIMP), but are therefore
not usable for bigger applications. Some others sample the target program and
therefore are not able to output an upper bound for entropy flow, but only a
lower bound (e.g., leakWatch).

Where correct entropy flow through a transformation function is essential (as
the shuffling function for the card deck), such functions may also be proved by
KeY [7] to be bijective, when seeing the RNG’s output as input to the function.
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7 Conclusion

Summing it up, it is hard to detect good randomness, because there is principally
no way to definitely tell from any data (and therefore the output of any RNG)
if its random. Consequently it is hard to acquire good randomness: Real entropy
sources are often too slow and the RNG’s task to distribute the randomness well
enough over its output stream can be very complicated for the RNG’s designer
and implementor. On top of that, it is hard to use random numbers correctly. All
the problems that we showed in this paper are various pitfalls that developers
of applications that use random data should be aware of.
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